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IL 60637, USA 
$ The James Franck Institute and Department of Chemistry, University of Chicago, 
Chicago, IL 60637, USA 

Received 16 September 1987 

Abstract. The role of solvent velocity fluctuations on the transport properties of polymer 
solutions is studied using renormalisation group expansions to order of the coupled 
Langevin equation model within a Fokker-Planck equation formulation. Introduction of 
the timescale separation approximation between polymer and solvent characteristic relaxa- 
tion times leads to an additional expansion in powers of a small dimensionless parameter 
which may heuristically be interpreted as the ratio of characteristic polymer (Rouse-Zimm) 
to solvent relaxation rates. Retaining zeroth-order terms in the latter expansion reduces 
the order solution of the Fokker-Planck equation identically to the corresponding 
expanded solution of the Kirkwood diffusion equation representation of the Rouse-Zimm 
model. Explicit expressions are derived for corrections to the Kirkwood diffusion equation 
due to solvent velocity fluctuations. The bare leading corrections for the intrinsic viscosity 
of preaveraged Gaussian chains are analysed and are shown to have a magnitude consistent 
with heuristic timescale separation arguments and to be negligibly small for typical polymer- 
solvent systems. It is therefore conjectured that the renormalised parameter is also 
sufficiently small to validate its neglect for these polymer systems. 

1. Introduction 

Renormalisation group methods have recently been extensively applied to study 
dynamical properties of dilute polymer solutions both with and without a systematic 
flow (Jasnow and Moore 1978, Oono and Freed 1981, Yamazaki and Ohta 1982, Shiwa 
and Kawasaki 1982, Lee et a1 1984, Schaub et a1 1985, Jagannathan et a1 1985, 1987, 
Puri et a1 1986, Wang and Freed 1986, 1987, 1988, Wang 1987). These applications 
can be classified into two categories according to the types of models employed. One 
approach is based on coupled Langevin equations for the dynamics of both the solvent 
velocity and the polymer conformation variables, while the other uses the well estab- 
lished Kirkwood diffusion equation (Kirkwood 1954), corresponding to the Rouse- 
Zimm model (Rouse 1953, Zimm 1956), for the polymer conformational distribution, 
where the effects of the solvent enter only through the conventional Oseen tensor. 
Both treatments introduce the perturbative and E expansions of renormalisation group 
methods, but the coupled polymer-solvent dynamical model is somewhat more general 
because it includes the influence of solvent velocity fluctuations on the polymer 
dynamics, an effect which may be of significance because these solvent velocity 
fluctuations occur throughout the region occupied by the polymer and are then 
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transmitted by hydrodynamics to the rest of the polymer chain. It is this possible 
long-range effect of the solvent velocity fluctuations which suggests the Langevin model, 
in part, by analogy with the theory of phase separation in binary fluids where the 
solvent velocity fluctuations alter dynamical critical exponents by a small amount. 

Apart from the differences in physical content, the coupled Langevin and diffusion 
equation methods provide different useful perspectives on the treatment of polymer 
dynamics. The former approach gives a more straightforward way of calculating 
explicit time-dependent polymer quantities, while the latter method is often more 
convenient, partly because of its long history of usage in polymer science for the 
evaluation of polymer transport properties such as the translational diffusion coefficient 
and intrinsic viscosity. 

Oono and Freed (1981) first noted the possible role played by solvent velocity 
fluctuations and used projection operator methods to show (Lee er a1 1984) that to 
order E (where E = 4 - d and d is the spatial dimensionality) the Kirkwood diffusion 
equation is equivalent to the coupled Langevin equations under the assumption that 
typical solvent relaxation times are much smaller than those of the polymers. Because 
formal calculations, determining differences, if any, between the solvent fluctuation 
and Kirkwood diffusion equation models, are not yet possible beyond order E ,  it has 
been concluded that until such analyses have been made, it should be assumed that 
the Kirkwood diffusion equation is very likely incompatible in order E *  with the kinetic 
description of the Langevin equations for the coupled dynamics of the polymer-solvent 
system. 

The possible inequivalence of the kinetic and diffusion equation models raises an 
important difficulty as follows. The renormalisation group theory of many dynamical 
polymer properties, such as the translational diffusion coefficient and the intrinsic 
viscosity, has these quantities proportional to the order E hydrodynamic interaction 
parameter and, therefore, the order E description is fairly trivial. Thus, treatments of 
dynamical properties of polymer solutions require at least order computations in 
order to provide useful and non-trivial predictions, but such calculations have, to date, 
only been applied within the Rouse-Zimm model. One example is the preaveraging 
corrections that emerge only beginning in order E’ in the computation of the diffusion 
coefficient or intrinsic viscosity (Wang and Freed 1986, 1987). Consequently, the 
currently available order .s2 Kirkwood diffusion equation renormalisation group calcu- 
lations of polymer transport properties stand in contrast with the current unavailability 
of order E’ calculations for the more rigorous but complicated kinetic model containing 
solvent velocity fluctuations. 

Our interest in this paper lies in the removal of the severe difficulties in solving the 
kinetic model to permit second-order computations of the differences between the two 
models. We utilise an analogue of the timescale separation approximation (Lee et a1 
1984) to show that it leads in a limit to the equivalence of the coupled polymer-solvent 
fluctuation and Kirkwood diffusion equation models for order E’ long-wavelength 
low-frequency polymer properties. The kinetic equation model contains the additional 
bare parameter kBTp/107)0 which is dimensionless and independent of both the chain 
length No and of the spatial dimensionality d. This additional parameter may loosely 
be taken as equivalent to the ratio of characteristic solvent to small polymer relaxation 
times, where k,T is the thermal energy, p is the solvent density, qo is its viscosity and 
go is the polymer ‘bead’ friction coefficient. 

Our analysis of the magnitudes of terms in given orders of E does not follow the 
projection operator approach (Lee et a1 1984). Instead, we further develop the methods 
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(Wang and Freed 1986, 1987) used in order E’ calculations within the Kirkwood 
diffusion equation formulation of the Rouse-Zimm model, and this approach is 
combined with techniques introduced by Kawasaki and Gunton (1976) for treating 
mathematically analogous problems of critical dynamics. Our recent advance with 
this simpler model thus provides one of the tools for an onslaught into the physically 
interesting and mathematically difficult problem of the role of solvent velocity fluctu- 
ations on polymer dynamics. 

The Kirkwood diffusion equation is traditionally obtained from the continuity 
equation describing conservation of polymer mass in which the solvent is treated 
separately by steady state hydrodynamics. A correct treatment of polymer dynamics, 
however, should also include the influence of the motion of solvent molecules on the 
dynamics of polymer segments. Such a detailed dynamical description of the coupled 
polymer-solvent motion is provided by the coupled Langevin equations for the polymer 
and solvent. Within some appropriate ranges of validity, the Kirkwood diffusion 
equation should be justifiable (i.e. derivable) from these fundamental Langevin 
equations. Full theoretical justifications of this nature are currently unavailable despite 
some considerable theoretical efforts on this problem. 

We begin with the coupled Langevin model in § 2 and convert these coupled 
Langevin equations to a Fokker-Planck equation for the combined polymer-solvent 
dynamics. The Fokker-Planck equation is then transformed to a diffusion-like equation 
for the polymer distribution function by averaging out the fluctuating solvent velocity. 
This diffusion-like equation is still mathematically very intricate due to the physically 
interesting presence of couplings between the polymer and solvent dynamics (see § 2). 
It then becomes essential to evaluate the corrections arising from expansion in powers 
of the dimensionless parameter kB Tp/ love. This decoupling is introduced to formally 
extract the correction terms to the Rouse-Zimm model through order E’.  A complete 
evaluation of the correction terms presents a technically rather formidable computation 
problem which is left for a future work. Section 3 uses the preaveraging approximation 
to provide only an order of magnitude estimate of the corrections to the Kirkwood 
diffusion equation due to the solvent velocity fluctuations. 

2. Derivation of diffusion equation from Langevin equations 

A fundamental kinetic model for the description of polymer dynamics in solution is 
provided by the coupled Langevin equations for the combined polymer and solvent 
dynamics. We employ a continuous chain model where R( 7, t )  designates the position 
of the segment at a contour distance T along the chain at time t. It is convenient to 
employ units in which the chain conformation is specified by C ( T ,  t )  = ( d / I ) ” 2 R ( 7 ,  t ) ,  
where d is the spatial dimensionality and I is the Kuhn length of a segment. Using 
these units the Langevin dynamics for the polymer conformation c(7,  t )  merely states 
(Schaub et a1 1985) that the friction force l ,{ac(~, t ) / a t  - U [ C ( T ,  t ) ,  t ] }  is balanced by 
polymer-polymer and random forces 

where Lo is the bare friction coefficient of this segment, u(r ,  t )  is the effective fluctuating 
solvent velocity field at position r at time t ,  and H { c }  is the dimensionless Edwards 
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free energy (Edwards 1965) for the polymer configuration c ( r ,  t )  

H { c } = -  1 ! N o  dT ( - + ( ~ : / 2 )  / " a d T  l O N o  dT' S[ C( T, t )  - C(  T ' ,  t ) ]  
2 0  d r  0 

with No being the contour length of the polymer and V :  the bare excluded volume 
parameter. The force 8 ( ~ ,  t )  in (2.1) designates a random force which has a Gaussian 
white noise spectrum with zero mean and with variance 

(8 (  7, t ) 8(  r ', t ')) = 2( k~ Td / 5 0 )  a( 7 - 7') 8 ( t - t ')I (2.3) 

where 1 is the unit tensor in d dimensions. The units of U are defined by (2.1). 
The fluctuating solvent velocity field is described by the Navier-Stokes equation 

which incorporates friction forces due to polymers and the random thermal velocity 
fluctuation in the fluid 

where p is the solvent density, q0 is the solvent viscosity, p is the effective hydrostatic 
pressure in the fluid and f is a random force density with zero mean and with variance 

(f( r, t )f( r', t ')) = -2( k~ Td / I )  voV2 8 ( r - r') 6 ( t - t ') 1. (2.5) 

Here U is assumed to satisfy the incompressibility condition V * U = 0 which suffices 
for computing low-frequency polymer properties. The random forces (2.3) and (2.5) 
are necessary to produce the correct equilibrium distribution for both polymer and 
solvent in the long time ( ? + C O )  limit. The Rouse-Zimm model can be derived by 
dropping the term in pau( r ,  t ) / a t  in (2.4), so it is clear that the kinetic model (2.1)-(2.5) 
introduces a new p-dependent parameter into the description of the polymer dynamics. 

2.1. Fokker-Planck equation 

The coupled Langevin equations (2.1) and (2.4) can be solved simultaneously for the 
polymer conformation c ( r ,  t )  and the solvent velocity field u(r,  t )  as functions of the 
noises 8 and J: An alternative way of studying the polymer dynamics, as embodied 
in the model (2.1)-(2.5), is by means of the equivalent Fokker-Planck equation for 
the joint time-dependent distribution function for the polymer conformation and the 
solvent velocity field. The transformation of (2.1) and (2.4) into the corresponding 
Fokker-Planck equation is facilitated by expressing (2.4) in Fourier space with k the 
Fourier variable conjugate to r and with uk( t )  the spatial Fourier transform of U( r, t ) ,  

where the pressure p has been eliminated by considering only the transverse components 
of uk as incompressibility implies k * uk = 0 and where the subscript i on a vector 
designates that only the portion orthogonal to k is retained. Standard procedures (e.g. 
Ma and Mazenko 1975) for averaging out the Gaussian white noises 8 and f enable 
equations (2.1) and (2.6) to be converted to the Fokker-Planck equation for the 
distribution ? ( { c } ,  {U}, t ) .  This equation is written in operator form as 

a?/at  = (F,+ F,)? (2.7) 
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where the uncoupled zeroth-order operator Fo is decomposed into polymer and solvent 
portions as 

(2.8a) Fo = Fop + F0.Y 

(2.86) 

( 2 . 8 ~ )  

and where F, represents the coupling between the polymer c( r, t )  and solvent variables 
U k ( t )  

Equations (2.8) and (2.9) employ the shorthand notation 

_= ( 2 ~ ) - ~  ddk. (2.9a) 

Below, units are used in which p = k B T =  ( d / l )  = 1, and at the end of the calculation 
natural units are reinstated. 

Since we are interested in polymer properties, we seek a reduced equation for the 
polymer motion only. As shown below, this is accomplished by removing the fluctu- 
ations u k  from the Fokker-Planck equation (2 .7)  through integrations of u k .  

2.2. Di@sion equation 

The probability distribution P ( { c l ,  t )  for the polymer conformation is defined in terms 
of the full distribution function P of (2.7) by an integration over solvent variables 

P ( { c ) ,  t )  5 J ~ { u } @ ( { c ) ,  { U ) ,  t ) .  (2.10) 

A formal equation for P ( { c } ,  t )  is obtained by integrating the Fokker-Planck equation 
(2.7) for @ over { U }  

(2.11) 

where Fop and F,  are defined in (2.8) and (2.9) respectively, and where use is made 
of the equality 

D { ~ ) F , , @  = o I 
which is obtained by partial integration and by invoking the boundary condition that 
@ vanishes for {U} + CO. 

Equation (2.11) is not a closed equation for P ( { c } ,  t )  because F,@ contains { U }  in 
combinations different from the definition (2.10) of P. To proceed further with the 
transformation of (2.1 1) into a closed equation, we begin by solving the Fokker-Planck 
equation (2.7) for @ ( { c } ,  { U } ,  t )  in order that it be used in (2.11). 
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The polymer-solvent coupling term Fl in (2.7) is a perturbation of order E " *  within 
the renormalisation group theory. This observation allows the Fokker-Planck equation 
(2.7) to be solved perturbatively as follows. Let the full distribution @ ( { e } ,  {U}, t )  be 
expanded as 

where each gj is of order (Fl)'. Then the Pi satisfy the set of equations 
@ = @ o + @ l + @ * + . . .  (2.12a) 

(2.12 b )  

( 2 . 1 3 ~ )  

Equations (2.12b) and ( 2 . 1 3 ~ )  only explicitly exhibit the time dependence of the @,, 
and the dependence on {U} and { c }  is understood. Because of the additive structure 
of Fo in (2.8a), equation ( 2 . 1 3 ~ )  is separable into the product of a function only of 
{U} and one only of { c } .  Thus, we write this zeroth-order solution as 

(2.13 b )  
where both depend on the initial conditions, and where the derivation of (2.13b) 
assumes (see below)Athat the initial eO(O) is likewise separable into a product form. 
A determination of Po( t )  is presented below after we complete the description of the 
solution of (2.12b). 

Equation (2.12b) can be readily integrated to give the formal operator solution 

@ o w  = W U l ,  t ) R { c } ,  t )  

( 2 . 1 4 ~ )  

We are interested only in @( t )  at times t comparable to long-wavelength polymer mode 
relaxation timescales t p  (the times of experimental relevance for polymer properties). 
These tp are much greater than the relaxation times t, characteristic of the solvent 
system on the scale of the polymer size. Since the Fo in exp(Foa) of (2.14a) is negative 
definite with eigenvalues of the form - ( t ; ' +  ti'), the contributhg values of a to the 
integral ( 2 . 1 4 ~ )  reside in the range of 0 6  us t,<< tp  = t ,  so that Pg-l( t  - a) in ( 2 . 1 4 ~ )  
can be replaced by @ j - l ( t ) .  Likewise exp(Foa) is negligible at the upper integration 
limit of t = O( r p ) ,  converting the integral to one involving Jr du. These replacements 
reduce ( 2 . 1 4 ~ )  to 

@ ! ( t )  = -F;lFl@,-l(t) (2.14b) 
and enable ( 2 . 1 2 ~ )  to be rewritten in terms of the zeroth-order distribution So( t )  as 

I: ei(t) = d a  exp(F0a)Fl@,_.,( t-a).  

@ ( t ) = [ i - ~ ; l ~ ~ + ( ~ o l F ~ ) ~ - .  . . ]@, , ( t ) .  (2.15) 
An analysis is given in appendix 2 of the non-Markovian corrections arising from the 
use of ( 2 . 1 4 ~ )  instead of (2.14b). 

Following Kawasaki and Gunton (1976), we assume that at the initial time t = 0 
the solvent velocity fluctuations are governed by their equilibrium distribution function 
Pe,{u} which is determined by the equation 

FosPeq{u} = 0 ( 2 . 1 6 ~ )  
whose solution is 

Pe,{u) = exp( -I, * U.). (2.16b) 
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Hence, using ( 2 . 1 6 ~ ~ )  the go of (2,136) becomes 

go(t) = Peq{u}F({cI, t )  (2.17) 

where F({c}, t )  represents the zeroth-order polymer distribution function which is as 
yet unspecified and which is determined below in terms of P ( { c } ,  t ) .  

In order to determine the as yet unknown F({c}, t ) ,  it is instructive to substitute 
(2.15) and g ( t )  with (2.17) into the definition for the full polymer distribution (2.10), 
yielding 

P ( { c } ,  t ) =  D(u}[l-F, 'F,+(F, 'F1)2-.  . .]Peq{u}F({c}, t )  I 
(2.18a) 

where the second equality in (2.18a) follows because F,  is an odd function of {U} and 
therefore the integration of its product with !e,,,{u} of (2.16) vanishes. Inversion of 
( 2 . 1 8 ~ )  shows that the unspecified function P ( { c } ,  t )  may be expressed in terms of 
P ( { c } ,  t )  of (2.10) by 

- 1  

D { u } ( F ~ 1 F l ) 2 P ~ ~ { u } + O ( F ~ ) )  P ( { c } ,  t ) .  (2.186) 

Finally, we insert (2.15) for along with (2.17) and (2.186) into the diffusion-like 
equation (2.11) to obtain the closed equation for P as 

aP/at  ={Fop -([F,F, 'F, + F1.(F,'FJ31),[1 - ( ( ~ , ' ~ , ) 2 ) , 1 + 0 [ ( ~ 1 ) 6 1 ~ ~  

where the brackets (A), denotes the average over the solvent velocities 

(A), zs J D{u}APeq{u} 

and where odd functions of {U} are dropped in (2.19) because they 
averages in (2.20). For notational convenience we represent (2.19) in the compact 
operator form as 

dP({c, t } ) / a t  = ( F O p + F h ) P ( { c } ,  t ,  

Fh = -( F, F ,  Fl ), + 

(2.21) 

where Fh is given by 

+ O[ ( F1 ) 6 ]  (2.22) 

and where the order E' contribution to (2.2) is AFY' and is defined by 

AF?) = ( F , F ; ' F ~ ) ~ ( (  F ; ' F , ) ~ ) ,  - ( F , ( F ~ ' F , ) ~ ) , , .  (2.23) 

Next we evaluate the {U} integrations in (2.21)-(2.23) to obtain the explicit diffusion 
equation for the polymer conformation distribution function P ( { c } ,  t ) .  To compute 
the averages ( ), involving F;' ,  we require some elementary properties associated with 
the operator FAs that is the adjoint of Fa, in ( 2 . 8 ~ )  and that is given by 

(2.19) 

by 

(2.20) 

produce zero 

(2.24) 
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The operator FA, has a structure similar to that of Hermite's equation for the Hermite 
polynomial H , , ( x ) .  It is straightforward to obtain the first few sets of eigenvalues and 
eigenfunctions of FAs as 

F b , l =  0 (2.25 a )  

F&uq = - q 2 v o U q  (2 .25b)  

F d s ( U q , U q 2 -  SUq, /6U-q, )  = -(d+ q : ) v o ( U q , U q 2 -  S U q 1 / 8 U q * ) .  ( 2 . 2 5 ~ )  

Using ( 2 . 8 )  and (2 .9)  for Fo and F , ,  respectively, along with (2 .16)  enables the first 
term in Fh of (2 .22)  to be represented as the integral 

(2 .26)  

where use is made of the fact that Peq{ U }  vanishes at 1 U I  + a3 to drop terms arising from 
partial integration. Introducing the property (2.25 b )  and the equality 

(2 .27)  (Uk'Uk),, = T( k)6(k + k ' )  (1 - k / K 2 ) 6 ( k  + k ' )  

into equation (2 .26)  reduces the latter to 

x exp( -ik C( 7')) (&)+%) - (2 .28)  

where Fop is defined in ( 2 . 8 ) .  

2.3. Timescale separation 

The coupling between the polymer and solvent dynamics is manifested in (2 .28)  through 
the combined polymer-solvent relation factor ( k 2 q o  - Fop)- ' .  The quantity k 2 v o  (or 
more precisely k 2 v 0 d / p l )  describes the relaxation rate of solvent modes at wavelength 
k - ' ,  and -Fop formally gives the polymer relaxation rate. Because Fop is an operator, 
the diffusion-like equation (2 .21)  is quite complicated, and equation (2 .28)  is only the 
order E part of the diffusion operator Fh. Lee et a1 (1984)  have encountered technical 
difficulties of a similar nature. They simplify the problem by noting that typical solvent 
relaxation times are much smaller than polymer relaxation times, so that factors such 
as Fop in the denominator of (2 .28)  can be neglected. In effect, the model (2 .1) - (2 .5)  
contains the additional small dimensionless parameter k ,  T p /  lovo which may be taken 
to be the ratio of a new bare coupling constant yo= k , T p / q i  to the original bare 
hydrodynamic coupling parameter go = po/ q0. 

The bare parameter go has dimensions of L-'12, so bare perturbation expansions 
in go are series in go Ni'2 requiring renormalisation. The bare yo  likewise has dimensions 
L--FI2 and is thus at least an order E quantity, making yo/go  begin formally at least at 
order E O .  After renormalisation the renormalised y must appear as yN' with $ a 
crossover exponent. Consequently, the ratio y l g  emerges in perturbation expansions 
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multiplied by N"-"12, making this new parameter relevant, marginal or irrelevant, 
depending on whether I) - e / 2  is positive, zero or negative respectively. It is currently 
not known how to evaluate the higher-order terms necessary to renormalise yo and 
thereby to compute $ and determine if y begins in order eo, e' ,  . . . , or is irrelevant. 
Thus, we take the pragmatic view of noting below that yo/go = k B T p / l O v O  is generally 
quite small, so that even if this quantity is relevant, it is permissible to use an expansion 
in yo/go provided that the renormalised l(y/g)N'-E'21<< 1 .  It is, therefore, in this 
limited domain that we wish to establish the equivalence between the Langevin and 
diffusion equation formalism as well as to provide methods for determining and 
analysing these leading corrections in yo/go.  The expansion in yo/go is heuristically 
motivated in terms of the timescale separation ideas which make us optimistic that 
the region I(y/g)N'-"''I << 1 pertains to a wide range of physical systems. Formidable 
technical problems, however, currently preclude a verification of this conjecture. 

At first sight the above assumption regarding timescales looks somewhat ad hoc 
because equation (2 .28)  and other operators in Fh of (2 .22)  have an integration over 
k such that, in principle, there are contributions from ( k 2 v 0 d / p l )  < I /  Fop 11 - t i ' .  There- 
fore, we verify the plausibility of this assumption by first making two rough order of 
magnitude estimates of the two terms k 2 v 0 d / p I  and Fop in (2 .28) ,  and below we 
reinvestigate the problem for the preaveraged intrinsic viscosity. The basic physical 
point involved arises from the fact that the diffusion-like equation (2 .19)  is derived 
for evaluating polymer properties, so the length scales of the polymer are expected to 
be relevant. First, consider the shortest polymer length scale comparable to the Kuhn 
length 1 of the polymer chain. The solvent relaxation rate k 2 v 0 d / p l  on this minimum 
length is on the order of ( v 0 / p 1 2 ) ,  while on this length scale the polymer possesses the 
highest relaxation rate, the largest eigenvalue of (-Fop) which is of order ( k , T / l 0 l 2 ) .  
The ratio of the solvent relaxation time to that of the polymer for tke short-wavelength 
modes is thus given by 

( 2 . 2 9 ~ )  

where the Stokes relation lo = 6 v l v o  is employed to replace lo by ~ ~ 1 .  Typical values 
of T, vo ,  p and 1 for an ordinary polymer solution are given by T - room temperature, 
p - 1.0 g ~ m - ~ ,  vo- l o p 2  g cm-' s-' and 1 - 1.0- 10.0 A. These values lead to the first 
rough estimate 

t . , / tp  - (2 .296)  

On the other hand, at the longest polymer wavelength of the radius of gyration 
(S2)A'2 - n;'*l the solvent relaxation rate k 2 v 0 / p l  becomes ( v 0 / n 0 p l 2 ) ,  while the polymer 
has the lowest relaxation rate -Fop of order ( 2 v 2 k B T / 5 0 n i 1 2 ) .  Consequently, at the 
maximum length scale of the polymer-solvent system, the ratio is 

t s /  t p  - ( k B  TP/  5 0  7 0 )  = k B  TP/6v1T i 

(2 .30)  

which is very much smaller than the estimate in (2 .29)  for large no.  
In a more formal sense the transformation to dimensionless k'2 = k2Nol  converts 

the dimensionless expansion parameter into an expansion in ( p k ,  T /  volon$' ) (  k ' ~ ~ l ) - ' ,  
where the powers 0 and 1 on no indicate the ranges of dependence of the smallest and 
longest wavelength modes. This expansion in inverse powers of k 2  can be shown to 
produce no new ultraviolet divergences, so renormalisation of the additional bare 
parameter p k ,  T /  7; is expected to proceed by direct analogy with that used for the 
polymer surface (Nemirovsky and Freed 1985) or surface critical phenomena problems 



2462 S-Q Wang and K F Freed 

(Diehl 1986) which employ expansions in co. The double expansion in p k B T / ~ O 1 0  
and in E is meaningful for the small values of pkBT/volo estimated in (2.29b), and 
there must exist some range of the renormalised parameter for which the expansion 
is likewise meaningful. 

Therefore, for most polymer systems it is legitimate to drop Fop with respect to 
k 2 v o / p l ,  and this approximation converts (2.28) into 

( 2 . 3 1 ~ )  
s 

dT dT’ - T[c( T ) ,  C(T’)] * (- 
8 4 7 )  

where T[ c(  T), c( T ’ ) ]  is the conventional Oseen tensor which in d-dimensional space is 

(2.31b) 

with the projection tensor 7 defined in (2.27). Lee er a1 (1984) have derived (2.31) 
from the Langevin equations (2.1) and (2.4) using projection operator methods. On 
the other hand, our treatment leading to (2.31) may readily be applied in higher orders, 
and it produces explicit expressions for the neglected terms. 

The next section presents a more reliable computation of the correction to (2.31) 
from (2.28) by use of an expansion in powers of the small bare parameter k B T p / l O q o  
for the preaveraged intrinsic viscosity using (2.21). We find that indeed the correction 
is very small as indicated by the rough estimates (2.29) and (2.30). The separation of 
timescales approximation, as described heuristically in (2.29) and (2.30), is also used 
in appendix 1 to show that the order E *  correction AFk2’ in (2.22) and (2.23) is negligible. 

TM), c(7‘)1 = I, 7 ~ )  exp{ik[c(T) - C ( 7 ’ ) 1 ~ 7 1 ~ ) - 1  

3. Corrections from solvent velocity fluctuations 

In order to investigate the difference between the exact expression (2.28) and the 
zeroth-order expansion (2.31) in the small bare parameter kBTp/50v0, it is useful to 
consider the computation of some particular dynamical polymer properties from (2.21). 
We illustrate this procedure for the steady state intrinsic viscosity [ T]  which is given 
by the correlation function (Felderhof et a1 1975) 

[ T I  = ( N A / M T o ~ B T )  JOm d t  (~12(0)~i*(t))eq 

with ( )eq denoting the average over the equilibrium distribution 

(3.1) 

N A  is Avogadro’s number and M is the molecular weight. The quantity Jl2(O) is the 
momentum flux 

(3.3) 

with 1 and 2 designating the first two Cartesian directions. Use of the diffusion-like 
equation (2.21) converts (3.1) into 

= - ( N A / M v 0 k B T ) ( J 1 2 / ( L 0  + Lh)- l /J IZ)ea  (3.4) 
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where Lo(Lh) is the adjoint of Fop(Fh). The renormalisation group assigns Lh as being 
at least of order E, so that equation (3.4) can be expanded in Lh to yield 

[77] = - ( N A / M ~ ~ o ~ B T ) ( J ~ ~ / ( L ~ '  - Li1L\,L,' + L ~ I L h L ~ I L h L i '  + *)IJ12)eq  

= -(N~/MrlokgT)(J121[L,'  f L i ' ( F ,  F,'Fl),L,'  

+ Li'(  F,  F,' F,)  iL i ' (  Fl F,' F, )  L;' - L i l  ALY'L,' + O( E ~ ) ]  lJIJeq (3.5) 

where (F,F;'F,):  is the adjoint of (2.28) and ALy' is the adjoint of (2.23) for AFF'. 
The adjoint of FH in ( 2 . 3 1 ~ )  is written as L H  and is used to define the difference 

operator 

A L ~ ' ~ [ - ( F , F , ' F , ) : ] - L ,  (3.6) 

and to rewrite (3.5) as 

[ T I F p  = -(NA/M770kgT)(J121[L,1 - LO'LHLO + L,'(L,L,')* - L,' ALy'LO' 

+ L,' A L ~ ) L ~ l L H L ~ ' +  L o l L ~ L g l  ALy'Li'  

+ L,' A L ~ ) L ; '  A L ~ ) L ; I  - L;' A L ( ~ ) L - ~  h 0 +O(E3)1/J12)eq 
/ 

= [ 77 I R Z  + A[ 77 1 1  + A[ 77 1 2  + O( E 3 )  (3.7) 

where the second equality holds because the expression for [ 7 7 I R Z  (zeroth order in 
A L y ) )  is identical to that for the intrinsic viscosity in the Rouse-Zimm model using 
the conventional Kirkwood diffusion equation. Wang and Freed (1987) represent 
[ 7 7 I R Z  in the E expansion 

[ T I R Z  = -( NA/ Mqo k B  T)(Jl21[ L,' - L i l  LHLil + L,' LHL; ' LHL;l+ o( & 3 ) ] / J 1 2 ) e q .  

(3.8) 

The quantities A[ 771, and A[ 7 7 1 2  in (3.7) are, respectively, the terms in ALy' and ALF' 
of order E and order c 2  which are corrections to [ 7 7 I R Z ,  arising from the inclusion of 
the solvent velocity fluctuations that originate from the Fokker-Planck equation (2.1 1). 
These correction terms are more explicitly represented in operator form as 

A[ 7711 = ( NA/ ~ 7 7 0  kB T ) ( J ~ ~ I  ~ ~ ( h l ' ~ i l I ~ I 2 ) e q  (3.9) 

A [ v ] 2 =  -(NA/MVO ~ B T ) ( J I ~ I [ L ~ '  AL"''L,'L,L,'+L,'L,L,' ALP'L,' 

+ L,' ALy'L;' ALr 'L i I -  L,' AL?)L;I]IJ12)eq (3.10) 

where the superscripts 1 and 2 indicate order E and c 2  quantities, respectively. 
The bare corrections A[T], and A [ 7 I 2  are now both shown to be negligible, in 

comparison with the corresponding order bare quantities in [ 7 7 I R Z ,  and consequently 
both the full kinetic and diffusion equation models lead to the same intrinsic viscosity 
to order within the range for which the renormalised (y /g)N'- '" is sufficiently 
small. We begin this analysis by quoting (Wang and Freed 1986) some properties of 
the operator Lo: 

(3.11) 
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where 5“ are the Rouse normal coordinates related to { c }  by the transformation 
no- I 

( 3 . 1 2 ~ )  

Q ~ ( T )  = [ ( ~ - ~ o , ) / n o ] ” 2 ~ ~ ~ [ ~ a ( ~ + ~ / ~ ) ~ 0 ] .  (3.12 b) 

The eigenvalue equation for Lo is written in terms of the normal coordinates (5) as 

Lo+,: (x:) = - ( n :A :/ l o )  9,: (x:) ( 3 . 1 3 ~ )  

with the variables and eigenfunctions 

X: = A,5z/21i2 A, = 2 sin(.rra/2no) (3.13b) 

+,(x)  = (2% !)-Ii2Hn(X) ( 3 . 1 3 ~ )  

where H n ( X )  is the nth-order Hermite polynomial. The label a in (3.12) and (3.13) 
denotes the a t h  Cartesian component. Given (3.12) and (3.13) it is straightforward to 
expand JI2 in (3.1) as a series expansion in the {+,,} by (Wang and Freed 1986, 1987) 

(3.14) 

Since the evaluation of the correction A[T], involves the operator ALf’, we first 

no- 1 

p=1 
J501J12 = kBT c ( ~ 0 / 2 A t ) + ~ ( X ~ ) + , ( X ~ ) .  

substitute (2.28) and (2.31) into (3.6) to write ALV’ in the form 

ALL”= loNo loNo d7 d7’ Ik (“-w) 8C(7) 8C(7) - ~ ( k )  exp(ik. ~ ( 7 ) )  

6 
x ( k2T0 - Lo)-lL0( exp( -ik c(  7’)) - (3.15) 

8C( 7’) 

where Lo is defined in (3.11) and satisfies (3 .13~) .  We obtain a leading order of 
magnitude estimate for A [ 7 I 1 ,  by replacing the factor ( k 2 v o -  Lo)-’ in (3.15) by ( k 2 ~ 0 ) - 1 ,  
thereby rendering the computation of A[ 711 tractable. This approximation is again in 
the spirit of an expansion in powers of the ratio of polymer to solvent relaxation times. 
More formally, it neglects terms of one higher order in the small additional bare 
parameter kB Tp/ ~ ~ 5 ~ .  Introducing this approximation and substituting (3.15) into 
(3.9) we find after some algebra that 

(3.16) 

where the preaveraging approximation is used to replace exp{ik - [c( T) - c(  7)]} by its 
equilibrium average (exp[ik * ( c  - c ‘ ) ] ) ~ ~ ,  and where p ,  and p 2  are unit vectors in the 
first two Cartesian directions, respectively. Performing the integrations over the normal 
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coordinates (5) reduces (3.16) to 

A[T]P= - ( N A k B T / M q o )  ‘fl (50/2A:)2 I,” J o N a d ~ d +  ( k 2 ~ 0 ) - 2 e x p ( - k 2 / ~ - 7 ’ 1 / 2 )  
a = l  

x Q a ( . ) Q a ( 7 ’ ) ( A Z , / 5 0 ) ( k 2 - h 2 a ) ( l  - 1/d) .  (3.17) 

The k integral in (3.17) can be easily evaluated to produce 

a = l  Jo Jo 

x [ ( 1  - 1/ d ) /  ( d  - 2 ) ] ( 2 ~ ) ~ ’ ~ [  I T - T’“’~-’ + A 2 1 7  - T ’ / ~ / ~ (  1/ E ) ]  

- - ( N A ~ B T / M T O )  “i’ a = l  (50/2A:)2 loNo IONad7d+  Q a ( T ) Q a ( + )  

17-7’/E’2-1[(l - l /d ) / (d  -2)l(A~/770)(kBTp/fb~0) (3.18) 

where the factor of kB Tp is introduced to restore natural units and where the contribu- 
tion from the second term in the square brackets of the middle expression in (3.18) is 
neglected because it is much smaller than that due to the first term by a factor of 
( l /no).  The latter result follows because in the summation over a the A: - no2 while 
7 - no. Note that the retained term in 17 - T ‘ I ‘ / ~ - ’  represents the correction at wavelength 
I and has a magnitude corresponding to (2.29a), while the neglected term in A : ~ T  - T’/”’ 

is the correction at wavelength (S2)A’2 and has a magnitude corresponding to (2.29b). 
(Both contributions contain singular E - ’  portions as well as non-singular contributions.) 

in [71IFP does (see (3.19) below), producing a dependence of the dynamical polymer 
exponent z on the solvent viscosity. Such a bare contribution, however, is shown 
below to be negligibly small compared to that in [ T I P  (see (3.20)). For the purpose 
of assessing the magnitude of the correction A[q] , ,  it is convenient to quote the 
corresponding leading part in the intrinsic viscosity [ 77IFP of (3.7), which is given in 
the preaveraging approximation by (Wang and Freed 1987) 

The expression (3.18) for A[T]P contains a pole in E just as the leading term 

E771 P = (NA/MT)OkB T)(J12/Lo’LHLo’IJ12)eq 

= - ( N A ~ B T / M T ~ )  “f’ (50/2A:)2 joNo loNo d7 d7’ ( A ~ / ~ O ) Q a ( 7 ) Q a ( 7 ~ )  
a = l  

x ~ T - - ‘ T ’ I ~ ’ ~ - ’ ( ~  - l / d ) / ( d  -2).  (3.19) 

It is not surprising to see that the ratio A [ ~ ] , / [ T ] ~  (dropping the superscript p )  is 
simply the ratio of the two timescales given in (2.296), namely 

A [ T l l / r T l l =  (keTp/ lobgs)  - (3.20) 

where the numerical estimate in (3.20) uses values quoted between ( 2 . 2 9 ~ )  and (2.29b). 
Therefore, as we predicted by the rough argument in § 2, the bare first correction 
A [ v l 1 ,  due to the thermal fluctuations of the solvent, is indeed extremely small for 
practically all polymer-solvent systems. Equations (3.9) and (3.19) enable us formally 
to say that the value of ALV’ is smaller than LH by at least a factor of because 
of (3.20), namely l/ALF)ll<< / / L H  ( 1 .  Since the solvent fluctuations relax much faster than 
the polymer does, in effect they do not enter into the dynamical process of the polymer 
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motion, and they therefore contribute little to the dynamical observables of the polymer. 
Thus, it is adequate to neglect A [ s ] ,  in (3.7). 

contains four terms. Using either the physical 
arguments of (2.29) and (2.30) or the type of estimate illustrated above, it can be 
shown (see appendix 1) that again each of the four terms in A[77I2 is much smaller 
than the leading-order E *  term in [77IFP of (3.7). This illustrative calculation of the 
intrinsic viscosity makes it clear through order E *  that the bare solvent velocity 
fluctuations play a negligible role in affecting the polymer dynamics and its associated 
dynamical exponent and that the bare [ 7 7 I F p  calculated from the Fokker-Planck 
equation is identical to the bare [ 77IRZ from the full Kirkwood diffusion equation. This 
conclusion may be demonstrated to likewise apply for other long-wavelength low- 
frequency polymer dynamical properties as well. Consequently, we have justified the 
use of the Kirkwood diffusion equation for order E’ evaluations of dynamical polymer 
properties within a range of small (kBTp/50770) (N/I )~’ -“ /2  which we conjecture to 
apply to most polymer systems. Unfortunately, it is currently not possible to evaluate 
the terms in p 2  that are required for renormalising k B T p / 7 ;  and for calculating 4. 

The example of the intrinsic viscosity indicates, in effect, that the term in 
- ( F ,  Fg’F , ) ,  of (2.22) for Fh can be replaced by FH and that AFh2’ in (2.22) contributes 
negligibly to Fh or to the avera.ged Fokker-Planck equation (2.21). Therefore, these 
results reduce equation (2.21) to 

The order E’ correction 

(3.21) 

with Fop and FH given by (2.286) and (2.31), respectively. Equation (3.21) is simply 
the Kirkwood diffusion equation for polymer dynamics. Thus, we demonstrate through 
order s 2  (note that F: is of order E * )  the conditions under which the kinetic equations 
(2.1) and (2.4) are equivalent to the frequently used Rouse-Zimm model of polymer 
dynamics in the diffusion equation formulation. As remarked by Oono, the investiga- 
tion here necessarily relies on the use of renormalisation group theory, namely, our 
demonstration of the validity of the Kirkwood diffusion equation approach to O(E’ )  
applies only within a renormalisation group framework and with our heuristically 
motivated arguments concerning the smallness of k, Tp/ 50770. 

4. Discussion 

We have performed a double perturbation expansion in the hydrodynamic interactions 
go and a bare expansion in the parameter yo= kBTp/77i. The ratio of these two 
parameters appears in the bare perturbation expansion and is loosely interpreted as 
the ratio of characteristic solvent and polymer timescales. The former expansion is a 
standard renormalisation expansion, while the latter is an expansion in an additional 
bare parameter which has the same critical dimensionality as the hydrodynamic 
interactions. This new parameter yo  is thus of order E ,  and may even begin in higher 
order in E .  Expansions in the ratio yo/go  are heuristically argued to be justified on the 
basis of the smallness of the bare kBTp/770g0 for most polymer-solvent systems. This 
double expansion shows that the classical Kirkwood diffusion equation can be derived 
within the renormalisation group formalism through order E’ from the kinetic Langevin 
equations that include contributions from the solvent velocity fluctuations, provided 
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the renormalised ( y / g ) (  N /  l)'-f'2 is sufficiently small. Then, the solvent velocity 
fluctuations contribute negligibly to low-frequency long-wavelength polymer dynamics 
provided the solvent possesses a much smaller characteristic relaxation timescale than 
that of the polymer modes of interest. 

The general theory is illustrate by calculation for Gaussian chains of the corrections 
to the Rouse-Zimm model for the polymer intrinsic viscosity [ 7 7 ]  arising from the 
solvent velocity fluctuations. The correction terms do affect the power law exponents 
for the dependence of [77] on molecular weight, but the bare contributions are found 
to be negligible as they are of the order of p k g T / l o v o ,  the ratio of polymer and solvent 
relaxation timescales where that for the solvent is measured at length scales comparable 
to a Kuhn length 1. Only the leading-order correction in the ratio of polymer to solvent 
relaxation times has been studied within the preaveraging approximation as the higher- 
order terms and preaveraging corrections are not yet analytically tractable. However, 
the present calculations do indicate the appropriate length scales for the viscous 
relaxation modes of the solvent to identify the relevant dimensionless expansion 
parameter for the corrections due to solvent velocity fluctuations. The negligible 
magnitude of the bare corrections supports the use of the Rouse-Zimm model through 
order E ~ ,  an order to which we have previously performed several dynamical renormali- 
sation group calculations (Wang and Freed 1986, 1987), in part, to study preaveraging 
corrections and effects of partial draining on polymer dynamics. 

The presence of a systematic flow makes it a much more complicated matter to 
investigate the correction to the ordinary Kirkwood diffusion equation due to solvent 
velocity fluctuations. These difficulties arise because the zeroth-order equilibrium 
distribution for the solvent velocity field (analogous to Peq{ U} here) becomes very 
complicated, and the distribution P({ c } )  for the polymer conformation even without 
hydrodynamic interactions is no longer spatially isotropic. Nevertheless, it is still quite 
interesting to study these problems under flow to order E.  It currently appears to us 
that the treatment of the polymer-flow problems is more conveniently made directly 
from the coupled kinetic (Langevin) equations. 
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Appendix 1. Evaluation of the correction A[q12 

Section 3 shows that l lAL~)l l<< / / LH( / ,  and consequently the first three terms of (3.10) 
are all much smaller than the leading-order contribution of ( J l 2 1 L o ' L H L o ' L H L o ' l J , 2 )  

to the renormalisation group Rouse-Zimm model [77IRZ. The last term in (3.10), 
containing ALL2', is of a new type and we now analyse it to verify that it is likewise 
very small compared to the leading-order E *  contribution to [77IRZ. 

We begin by computing AFL2), the adjoint of ALY' in (2.23). Partial integration of 
the second term of (2.23) over {U} produces the integral 
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exp( -ik’ * c‘ 
S SH uk, exp(ik’ c’) -- - - 

x jk, j dT (; a u k ,  Sc’ 

where c and c’ are shorthand notation for c(7; t )  and c ( r ‘ ,  t )  and where equations 
(2.8), (2.9) and (2.25b) have been used along with the fact that Peq{u} of (2.16b) 
vanishes at infinity 1111 -j CO. After another partial integration over { U } ,  equation ( A l . l )  
can be manipulated to give 

where use is made of the equality 

(A1.2) 

(A1.3) 

Comparing (A1.2) with (2.28) shows that the factor in large square brackets of (A1.2) 
is identical to (2.28). Consequently, the first term in (A1.2) is -(FtFO’Fl),((FO’F1)2)~ 
and cancels the first term on the right-hand side of (2.23), reducing (2.23) to a form 
involving the second term on the right-hand side of (A1.2), 

(A1.4) 

The presence of the second-order Hermite function (U,&- S U k / & k ‘ )  in (A1.4) prevents 
contributions from the ‘ground state’ ( 2 . 2 5 ~ )  entering to convert the left-hand factor 
of F;’ into an F;;, and thereby this feature keeps AF‘,*’ small as we describe below. 

Following the arguments presented in 0 3, factors such as ( k 2 T 0 -  Fop)-‘ in (A1.4) 
are replaced to lowest order in the ratio of polymer to solvent relaxation rates by 
( k 2 ~ 0 ) - 1 .  This is equivalent to the replacement of Fo in (A1.5) below by F,, of ( 2 . 8 ~ ) .  
Consequently, using (2.25b) converts (Al.4) to 
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Insertion of (2.9) in (A1.9) for the left F,  factor in F,F;;F, of (A1.5) produces 

A F ~ =  I ,  + I ~ =  -JON' I,,"'dT d.r' Jk Jk ,  i 0 exp(ik. ~ ) ( k ~ ~ ~ ) - ~ [ ( k ~ +  k'2)r]o]-1 

s 
7 exp(-ik' * c ' )  
SC 

k'+ P 2 )  770]-1 

(A1.6) 

where the term in u k ' S ( k  - k , ) +  uks(k'-kl) appears because of partial integration of 
the 6/6uk, part of F,. 

We proceed with the first term I ,  on the right-hand side of (A1.6) by again 
substituting (2.9) for the remaining F, ,  using (2.25b) and (2.27) and performing the 
U integration to reduce I ,  to 

exp(ik. c-ik' c f ) ( k 2 q 0 ) - ' [ ( k 2 +  k'2)v0]-1 Ik, i - T (  k )  - 2 * I ,  = loNo loNo d7 d7' 
s 

SH S SH -+- d7, d~~ - - ~ ( k ' )  
6Cl (6c2 se,) 

~[(k'~v~)-' exp(-ik. c,+ik' - exp(-ik' * c ,+ik*  c2)]. 
(A1.7) 

Now we compare I : ,  the adjoint of I , ,  with the leading-order E' contribution LHLOILH 
to [vlRZ by explicitly writing the latter as the integral 

(A1.8) 

Sections 2 and 3 demonstrate the ratio (\lLoJl/k2vo) in the k integral is much smaller 
than unity (i.e. of the order of f s / t p )  so that we have 

s 
x exp[ik' * (c, - c2)] -. 

sc2 

= ~ ~ ~ o N O  JON' dT dT' (i-z) - ~ ( k )  exp[ik (c-  c')] * - 6 ( k 2 T 0 ) - ,  
SC' 
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x exp[ik' ( c1 - cJ] * - 
Scz ll (A1.9) 

where A >> B is understood to imply B is smaller than A by ( t , / t , ) .  The right-hand 
side of (A1.9) has a similar structure to that of the adjoint 1: of (A1.7) and up to an 
accuracy of the order of magnitude Zi is approximately given by 

S SH 6 
SC' 

x loNa joNa dT1 dr2  (-E) - lk, ~ ( k ' )  (k ' 'TO)-l  

1: = loNo IoNo d T d T' (g - z) + T( k ) - exp[ ik - ( c - c ' )  ] - - ( k 2  v0) -2  

x exp[ik' - ( c1 - c2)] * -. 6 
Sc2 

(Al.  10) 

Equation (A1.lO) shows I t  as having a similar analytical form to the right-hand side 
of (A1.9). Therefore, Zi is of the same order of magnitude as the right-hand side of 
(A1.9). Consequently, our order of magnitude analysis leads to 

IILJO'LHII >> IIClI. ( A l . l l )  
The estimation of Z2 or I :  proceeds in a similar fashion where it again follows that 

IILHL~'LHII >> II1;II. (A1.12) 
The combination of ( A l . l l )  and (A1.12) demonstrates our contention 

JILHLO'LH 11 >> ll[AFL*']'ll = IlALP'II (A1.13a) 
which implies (see (A1.9) and thereafter) 

IIAL(~Z)II/IILHG~LH(/ - t , / t , .  (A1.13b) 
While these analyses are admittedly crude, they do serve to suggest that the bare 
correction term involving ALL2' in A[ 1712 of (3.10) is negligible compared to the leading 
bare contribution involving LHLi'LH in [ 771RZ. 

Appendix 2. Non-Markovian corrections 

The reduction of (2.11) to a closed equation requires the solution @ ( { c } ,  {U}, t )  to the 
Fokker-Planck equation (2.7). Section 2 presents the perturbative solution in terms 
of (2.13) and (2.14a) and then introduces a Markovian approximation to (2.14a). In 
this appendix we retain the full solution of ( 2 . 1 4 ~ )  and convert it using Laplace 
transforms into 

@i(s)= exp(-st)pi(t) dt=(s-Fo)- 'Fl@i_,(s) .  (A2.1) I: 
Now the Laplace transform @(s) of the full solution of (2.7) becomes expressed as 

@(s) = { 1 + (s - Fo)-'Fl + [(s - Fo)-'F1]' + . . .}Peq{ u } l ? ( s )  (A2.2) 
where the Laplace transform of (2.17) is used. Equation (2.10) implies that the Laplace 
transform P ( { c } ,  s) of P( t )  is obtained by integrating both sides of (A2.2) over {U} to 
yield 

(A2.3) P ( s )  = ({ 1 + (s - Fo)-'Fl + [(s - Fo)-'F1I2+. , . } ) " l? (s ) .  
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Inversion of (A2.3) shows the unspecified P(s) may be expressed in terms of P ( s )  by 

(A2.4) F ( s )  = (1 - ( [ (s -F~)-~F~I~),, +. . . > P ( s ) .  

Insert the inverse Laplace transform 

together with (A2.2) and (A2.4) into (2.11) produces 

x {(F,[(s - Fo)-1F*13)u - (F,(s - Fo)-'F,),([(s - ~ o ~ - 1 ~ l 1 2 ~ u l ~ ~ ~ ~  
(A2.5) 

where P ( s )  is the Laplace transform of P ( { c } ,  t ) .  Equation (A2.5) is derived without 
use of a Markovian approximation, while its Markovian approximation (2.21)-(2.23) 
is valid only for times t 2 t p ,  the polymer mode relaxation times, and tp >> t,. 

The factor ( s -F0) - l  in the first term on the right-hand side of (A2.5) may be 
transformed with the timescale separation 11 Fo, 11 >> 11 Fop /I approximation into a term 
containing the dynamic Oseen tensor. Qualitative arguments by Edwards and Freed 
(1974) and more quantitative ones by Metiu and Freed (1977) demonstrate that this 
dynamical Oseen tensor can safely be replaced by its static value for long-wavelength 
low-frequency polymer properties. On the other hand, the presence of s in the second 
term on the right-hand side of (A2.5) introduces no extra difficulties in showing that 
this term is negligible as outlined in appendix 1 for demonstrating the smallness of AFL*'. 
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